Identification and characterization of putative xylose and cellobiose transporters in Aspergillus nidulans
نویسندگان
چکیده
BACKGROUND The conversion of lignocellulosic biomass to biofuels (second-generation biofuel production) is an environmentally friendlier alternative to petroleum-based energy sources. Enzymatic deconstruction of lignocellulose, catalyzed by filamentous fungi such as Aspergillus nidulans, releases a mixture of mono- and polysaccharides, including hexose (glucose) and pentose (xylose) sugars, cellodextrins (cellobiose), and xylooligosaccharides (xylobiose). These sugars can subsequently be fermented by yeast cells to ethanol. One of the major drawbacks in this process lies in the inability of yeast, such as Saccharomyces cerevisiae, to successfully internalize sugars other than glucose. The aim of this study was, therefore, to screen the genome of A. nidulans, which encodes a multitude of sugar transporters, for transporters able to internalize non-glucose sugars and characterize them when introduced into S. cerevisiae. RESULTS This work identified two proteins in A. nidulans, CltA and CltB, with roles in cellobiose transport and cellulose signaling, respectively. CltA, when introduced into S. cerevisiae, conferred growth on low and high concentrations of cellobiose. Deletion of cltB resulted in reduced growth and extracellular cellulase activity in A. nidulans in the presence of cellobiose. CltB, when introduced into S. cerevisiae, was not able to confer growth on cellobiose, suggesting that this protein is a sensor rather than a transporter. However, we have shown that the introduction of additional functional copies of CltB increases the growth in the presence of low concentrations of cellobiose, strongly indicating CltB is able to transport cellobiose. Furthermore, a previously identified glucose transporter, HxtB, was also found to be a major xylose transporter in A. nidulans. In S. cerevisiae, HxtB conferred growth on xylose which was accompanied by ethanol production. CONCLUSIONS This work identified a cellobiose transporter, a xylose transporter, and a putative cellulose transceptor in A. nidulans. This is the first time that a sensor role for a protein in A. nidulans has been proposed. Both transporters are also able to transport glucose, highlighting the preference of A. nidulans for this carbon source. This work provides a basis for future studies which aim at characterizing and/or genetically engineering Aspergillus spp. transporters, which, in addition to glucose, can also internalize other carbon sources, to improve transport and fermentation of non-glucose sugars in S. cerevisiae.
منابع مشابه
Functional characterization of a xylose transporter in Aspergillus nidulans
BACKGROUND The production of bioethanol from lignocellulosic feedstocks will only become economically feasible when the majority of cellulosic and hemicellulosic biopolymers can be efficiently converted into bioethanol. The main component of cellulose is glucose, whereas hemicelluloses mainly consist of pentose sugars such as D-xylose and L-arabinose. The genomes of filamentous fungi such as A....
متن کاملActivating and Elucidating Metabolism of Complex Sugars in Yarrowia lipolytica.
The oleaginous yeast Yarrowia lipolytica is an industrially important host for production of organic acids, oleochemicals, lipids, and proteins with broad biotechnological applications. Albeit known for decades, the unique native metabolism of Y. lipolytica for using complex fermentable sugars, which are abundant in lignocellulosic biomass, is poorly understood. In this study, we activated and ...
متن کاملCharacterization of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C.
The filamentous ascomycete Aspergillus nidulans produces three major siderophores: fusigen, triacetylfusarinine C, and ferricrocin. Biosynthesis and uptake of iron from these siderophores, as well as from various heterologous siderophores, is repressed by iron and this regulation is mediated in part by the transcriptional repressor SREA. Recently we have characterized a putative siderophore-tra...
متن کاملA putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation.
Fungi employ different carbohydrate uptake systems to adapt to certain environmental conditions and to different carbon source concentrations. The hydrolysis of polymeric carbohydrates and the subsequent uptake of monomeric forms may also play a role in development. Aspergillus nidulans accumulates cell wall components during vegetative growth and degrades them during sexual development. We hav...
متن کاملIdentification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei
BACKGROUND Global climate change and fossil fuels limitations have boosted the demand for robust and efficient microbial factories for the manufacturing of bio-based products from renewable feedstocks. In this regard, efforts have been done to enhance the enzyme-secreting ability of lignocellulose-degrading fungi, aiming to improve protein yields while taking advantage of their ability to use l...
متن کامل